3.19.55 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^3}{(d+e x)^2} \, dx\) [1855]

Optimal. Leaf size=54 \[ \frac {\left (c d^2-a e^2\right ) (a e+c d x)^4}{4 c^2 d^2}+\frac {e (a e+c d x)^5}{5 c^2 d^2} \]

[Out]

1/4*(-a*e^2+c*d^2)*(c*d*x+a*e)^4/c^2/d^2+1/5*e*(c*d*x+a*e)^5/c^2/d^2

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {640, 45} \begin {gather*} \frac {\left (c d^2-a e^2\right ) (a e+c d x)^4}{4 c^2 d^2}+\frac {e (a e+c d x)^5}{5 c^2 d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^3/(d + e*x)^2,x]

[Out]

((c*d^2 - a*e^2)*(a*e + c*d*x)^4)/(4*c^2*d^2) + (e*(a*e + c*d*x)^5)/(5*c^2*d^2)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 640

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^3}{(d+e x)^2} \, dx &=\int (a e+c d x)^3 (d+e x) \, dx\\ &=\int \left (\frac {\left (c d^2-a e^2\right ) (a e+c d x)^3}{c d}+\frac {e (a e+c d x)^4}{c d}\right ) \, dx\\ &=\frac {\left (c d^2-a e^2\right ) (a e+c d x)^4}{4 c^2 d^2}+\frac {e (a e+c d x)^5}{5 c^2 d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 79, normalized size = 1.46 \begin {gather*} \frac {1}{20} x \left (10 a^3 e^3 (2 d+e x)+10 a^2 c d e^2 x (3 d+2 e x)+5 a c^2 d^2 e x^2 (4 d+3 e x)+c^3 d^3 x^3 (5 d+4 e x)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^3/(d + e*x)^2,x]

[Out]

(x*(10*a^3*e^3*(2*d + e*x) + 10*a^2*c*d*e^2*x*(3*d + 2*e*x) + 5*a*c^2*d^2*e*x^2*(4*d + 3*e*x) + c^3*d^3*x^3*(5
*d + 4*e*x)))/20

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(135\) vs. \(2(50)=100\).
time = 0.81, size = 136, normalized size = 2.52

method result size
risch \(\frac {1}{5} d^{3} e \,c^{3} x^{5}+\frac {3}{4} x^{4} d^{2} e^{2} c^{2} a +\frac {1}{4} x^{4} d^{4} c^{3}+a^{2} c d \,e^{3} x^{3}+a \,c^{2} d^{3} e \,x^{3}+\frac {1}{2} x^{2} e^{4} a^{3}+\frac {3}{2} x^{2} d^{2} e^{2} a^{2} c +d \,e^{3} a^{3} x\) \(99\)
gosper \(\frac {x \left (4 d^{3} e \,c^{3} x^{4}+15 x^{3} d^{2} e^{2} c^{2} a +5 d^{4} c^{3} x^{3}+20 a^{2} c d \,e^{3} x^{2}+20 a \,c^{2} d^{3} e \,x^{2}+10 x \,e^{4} a^{3}+30 x \,d^{2} e^{2} a^{2} c +20 d \,e^{3} a^{3}\right )}{20}\) \(100\)
default \(\frac {d^{3} e \,c^{3} x^{5}}{5}+\frac {\left (2 d^{2} e^{2} c^{2} a +c^{2} d^{2} \left (e^{2} a +c \,d^{2}\right )\right ) x^{4}}{4}+\frac {\left (a^{2} c d \,e^{3}+2 a c d e \left (e^{2} a +c \,d^{2}\right )+d^{3} e \,c^{2} a \right ) x^{3}}{3}+\frac {\left (a^{2} e^{2} \left (e^{2} a +c \,d^{2}\right )+2 d^{2} e^{2} a^{2} c \right ) x^{2}}{2}+d \,e^{3} a^{3} x\) \(136\)
norman \(\frac {\left (\frac {3}{2} d \,e^{4} a^{3}+\frac {3}{2} d^{3} e^{2} a^{2} c \right ) x^{2}+\left (\frac {3}{4} e^{3} c^{2} d^{2} a +\frac {9}{20} d^{4} e \,c^{3}\right ) x^{5}+\left (\frac {1}{2} a^{3} e^{5}+\frac {5}{2} d^{2} e^{3} a^{2} c +d^{4} c^{2} a e \right ) x^{3}+\left (d \,e^{4} a^{2} c +\frac {7}{4} d^{3} e^{2} c^{2} a +\frac {1}{4} d^{5} c^{3}\right ) x^{4}+d^{2} e^{3} a^{3} x +\frac {e^{2} c^{3} d^{3} x^{6}}{5}}{e x +d}\) \(155\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3/(e*x+d)^2,x,method=_RETURNVERBOSE)

[Out]

1/5*d^3*e*c^3*x^5+1/4*(2*d^2*e^2*c^2*a+c^2*d^2*(a*e^2+c*d^2))*x^4+1/3*(a^2*c*d*e^3+2*a*c*d*e*(a*e^2+c*d^2)+d^3
*e*c^2*a)*x^3+1/2*(a^2*e^2*(a*e^2+c*d^2)+2*d^2*e^2*a^2*c)*x^2+d*e^3*a^3*x

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 92, normalized size = 1.70 \begin {gather*} \frac {1}{5} \, c^{3} d^{3} x^{5} e + a^{3} d x e^{3} + \frac {1}{4} \, {\left (c^{3} d^{4} + 3 \, a c^{2} d^{2} e^{2}\right )} x^{4} + {\left (a c^{2} d^{3} e + a^{2} c d e^{3}\right )} x^{3} + \frac {1}{2} \, {\left (3 \, a^{2} c d^{2} e^{2} + a^{3} e^{4}\right )} x^{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3/(e*x+d)^2,x, algorithm="maxima")

[Out]

1/5*c^3*d^3*x^5*e + a^3*d*x*e^3 + 1/4*(c^3*d^4 + 3*a*c^2*d^2*e^2)*x^4 + (a*c^2*d^3*e + a^2*c*d*e^3)*x^3 + 1/2*
(3*a^2*c*d^2*e^2 + a^3*e^4)*x^2

________________________________________________________________________________________

Fricas [A]
time = 3.25, size = 96, normalized size = 1.78 \begin {gather*} \frac {1}{4} \, c^{3} d^{4} x^{4} + \frac {1}{2} \, a^{3} x^{2} e^{4} + {\left (a^{2} c d x^{3} + a^{3} d x\right )} e^{3} + \frac {3}{4} \, {\left (a c^{2} d^{2} x^{4} + 2 \, a^{2} c d^{2} x^{2}\right )} e^{2} + \frac {1}{5} \, {\left (c^{3} d^{3} x^{5} + 5 \, a c^{2} d^{3} x^{3}\right )} e \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3/(e*x+d)^2,x, algorithm="fricas")

[Out]

1/4*c^3*d^4*x^4 + 1/2*a^3*x^2*e^4 + (a^2*c*d*x^3 + a^3*d*x)*e^3 + 3/4*(a*c^2*d^2*x^4 + 2*a^2*c*d^2*x^2)*e^2 +
1/5*(c^3*d^3*x^5 + 5*a*c^2*d^3*x^3)*e

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 100 vs. \(2 (49) = 98\).
time = 0.05, size = 100, normalized size = 1.85 \begin {gather*} a^{3} d e^{3} x + \frac {c^{3} d^{3} e x^{5}}{5} + x^{4} \cdot \left (\frac {3 a c^{2} d^{2} e^{2}}{4} + \frac {c^{3} d^{4}}{4}\right ) + x^{3} \left (a^{2} c d e^{3} + a c^{2} d^{3} e\right ) + x^{2} \left (\frac {a^{3} e^{4}}{2} + \frac {3 a^{2} c d^{2} e^{2}}{2}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**3/(e*x+d)**2,x)

[Out]

a**3*d*e**3*x + c**3*d**3*e*x**5/5 + x**4*(3*a*c**2*d**2*e**2/4 + c**3*d**4/4) + x**3*(a**2*c*d*e**3 + a*c**2*
d**3*e) + x**2*(a**3*e**4/2 + 3*a**2*c*d**2*e**2/2)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 177 vs. \(2 (52) = 104\).
time = 0.88, size = 177, normalized size = 3.28 \begin {gather*} \frac {1}{20} \, {\left (4 \, c^{3} d^{3} - \frac {15 \, c^{3} d^{4}}{x e + d} + \frac {20 \, c^{3} d^{5}}{{\left (x e + d\right )}^{2}} - \frac {10 \, c^{3} d^{6}}{{\left (x e + d\right )}^{3}} + \frac {15 \, a c^{2} d^{2} e^{2}}{x e + d} - \frac {40 \, a c^{2} d^{3} e^{2}}{{\left (x e + d\right )}^{2}} + \frac {30 \, a c^{2} d^{4} e^{2}}{{\left (x e + d\right )}^{3}} + \frac {20 \, a^{2} c d e^{4}}{{\left (x e + d\right )}^{2}} - \frac {30 \, a^{2} c d^{2} e^{4}}{{\left (x e + d\right )}^{3}} + \frac {10 \, a^{3} e^{6}}{{\left (x e + d\right )}^{3}}\right )} {\left (x e + d\right )}^{5} e^{\left (-4\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^3/(e*x+d)^2,x, algorithm="giac")

[Out]

1/20*(4*c^3*d^3 - 15*c^3*d^4/(x*e + d) + 20*c^3*d^5/(x*e + d)^2 - 10*c^3*d^6/(x*e + d)^3 + 15*a*c^2*d^2*e^2/(x
*e + d) - 40*a*c^2*d^3*e^2/(x*e + d)^2 + 30*a*c^2*d^4*e^2/(x*e + d)^3 + 20*a^2*c*d*e^4/(x*e + d)^2 - 30*a^2*c*
d^2*e^4/(x*e + d)^3 + 10*a^3*e^6/(x*e + d)^3)*(x*e + d)^5*e^(-4)

________________________________________________________________________________________

Mupad [B]
time = 0.56, size = 91, normalized size = 1.69 \begin {gather*} x^2\,\left (\frac {a^3\,e^4}{2}+\frac {3\,c\,a^2\,d^2\,e^2}{2}\right )+x^4\,\left (\frac {c^3\,d^4}{4}+\frac {3\,a\,c^2\,d^2\,e^2}{4}\right )+\frac {c^3\,d^3\,e\,x^5}{5}+a^3\,d\,e^3\,x+a\,c\,d\,e\,x^3\,\left (c\,d^2+a\,e^2\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^3/(d + e*x)^2,x)

[Out]

x^2*((a^3*e^4)/2 + (3*a^2*c*d^2*e^2)/2) + x^4*((c^3*d^4)/4 + (3*a*c^2*d^2*e^2)/4) + (c^3*d^3*e*x^5)/5 + a^3*d*
e^3*x + a*c*d*e*x^3*(a*e^2 + c*d^2)

________________________________________________________________________________________